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The organization of my talk 

 

(1) The purpose of this study 

(2) Why a Hilbert space model? 

(3) Nonlinear difference equation model 

(4) Possible dynamical scenarios of solutions 

(5) Relations to dissipative structure and so on 

 

 

(1) The purpose of this study 

  The purpose of this study is to predict changes in 

asymmetric relationships among members of a group over 

time. Members may be various objects which are observed in 

various branches of sciences, such as nations, human beings 

and other animals, cells, and so on. A typical example of 

such data in psychology is a set of longitudinal 

sociomatrices gathered by Newcomb (1961). Recently, we 

have been developing difference equation models which 

describe and predict changes in these asymmetric 

relationships (2000, 2002, 2006, 2014, 2015a, b).  
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(2) Why a Hilbert space model 

  In our difference equation models, the state space is 

assumed to be a p-dimensional Hilbert space or a 

p-dimensional indefinite metric space.  The reason why we 

choose these spaces comes from a fundamental theorem on 

the asymmetric multidimensional scaling (abbreviated as 

asymmetric MDS) developed by Chino and Shiraiwa (1993). 

 

Theorem (Chino and Shiraiwa) 

  Let S be an N by N asymmetric similarity data matrix 

among N members of a group (measured at a ratio level), 

and let H be a Hermitian matrix computed from the data 

matrix S such that H=(S+St)/2 + i (S−St)/2, where i is a pure 
imaginary number.  Then, a necessary and sufficient 

condition for the members to be expressible in terms of 

(complex) Hilbert space is that H is positive semi-definite. 

 

This theorem tells us that any asymmetric relationships 

among members of a group at any time can be embedded in 

one of those spaces depending on the eigenvalues of H. The 

asymmetric MDS model based on this theorem is called the 

Hermitian Form Model (abbreviated as HFM, later). 

 

(3) Nonlinear difference equation model 

     It should be noticed here that the above theorem merely  

specifies the appropriate state space in which members of 

a group are located at an instant of time.  In contrast, the 

goal of our study is to predict changes in asymmetric rela- 

tionships among members of a group over time, given a set 

of longitudinal asymmetric relationship data matrices, S1, 

S2, …, ST. Here, Sn denotes the asymmetric relational data  

matrix at time n. 

   Since the above theorem provides us with the configu- 

ration of members on the space at each time, we can 

obtain a set of longitudinal configuration matrices, Z1, Z2, 
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…, ZT.  Here, let us denote 𝒛𝑗,𝑛 as the p-dimensional co- 

ordinate vector of member j at time n.  If the asymmetric 

relational data is measured at the interval level or 

ordinal level, we can obtain each of the longitudinal 

configuration matrices by an asymmetric maximum 
likelihood MDS developed by Saburi and Chino (2008). 

We need some appropriate model which predicts 

changes in these coordinate vectors of each member over 

time. Candidates for such a model may be nonlinear 

difference equation models.   

 

  Model 1 
A general model which we consider as the most funda- 

mental one may be the following complex nonlinear 

difference equation model: 

 

 𝒛𝑗,𝑛+1 = 𝒛𝑗,𝑛 + ∑ ∑ 𝑫𝑗𝑘,𝑛
(𝑚)

𝒇(𝑚)(𝒛𝑗,𝑛 − 𝒛𝑘,𝑛)𝑁
𝑘≠𝑗

𝑞
𝑚=1 , 𝑗 = 1, 2, ⋯ , 𝑁,   (1) 

 𝒇(𝑚)(𝒛𝑗,𝑛 − 𝒛𝑘,𝑛) = ((𝑧𝑗,𝑛
(1)

− 𝑧𝑘,𝑛
(1)

)
𝑚

, (𝑧𝑗,𝑛
(2)

− 𝑧𝑘,𝑛
(2)

)
𝑚

, … , (𝑧𝑗,𝑛
(𝑝)

− 𝑧𝑘,𝑛
(𝑝)

)
𝑚

)
𝑡

,     

(2) 

and  

            𝑫𝑗𝑘,𝑛
(𝑚)

= 𝑑𝑖𝑎𝑔 (𝑤𝑗𝑘,𝑛
(1,𝑚)

, 𝑤𝑗𝑘,𝑛
(2,𝑚)

, … , 𝑤𝑗𝑘,𝑛
(𝑝,𝑚)

).                  (3) 

 

Here, 𝒛𝑗,𝑛 denotes the coordinate vector of member j at 

time n in a p-dimensional Hilbert space or a 

p-dimensional indefinite metric space.  Moreover, m 

denotes the degree of the vector function 𝒇(𝑚)(𝒛𝑗,𝑛 − 𝒛𝑘,𝑛), 

which is assumed to have the maximum value q. 

Moreover, 𝑤𝑗𝑘,𝑛
(1,𝑚)

, 𝑤𝑗𝑘,𝑛
(2,𝑚)

, … , 𝑤𝑗𝑘,𝑛
(𝑝,𝑚)

 are complex cons- 

tants. This model is very general and might enable us to 

describe various possible changes in asymmetric rela- 

tionships among members over time.  

 

    Model II 

      Another type of model is a real version of the above 
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   complex difference equation model.  In general, any 

   p-dimensional Hilbert space as well as indefinite metric 

   space may be viewed as a 2p-dimensional Euclidean space.  

As a result, this type of model can be said to be a real 

difference equation model.  In this case, we assume more 

specific changes in asymmetric relationships among 

members.  That is, we assume that the members obey 

the following three basic principles of interpersonal 

behaviors (e.g., Chino, 2015a, b): 

 

1. The asymmetric sentiment relationships among 

members make their affinities change. 

2. If a member has a positive sentiment toward another 

member, then he or she moves toward the target 

member. 

3. If a member has a negative sentiment toward 

another member, then he or she moves away from the 

target member. 

 

      At this point, it should be noticed that according to the 

real version of HFM, similarity of member j to member k 

at a given time in a two-dimensional Euclidean space can 

be written as 

 
             𝑠𝑗𝑘 = λ(𝑥𝑗1𝑥𝑘1 + 𝑥𝑗2𝑥𝑘2)  + λ(𝑥𝑗2𝑥𝑘1 − 𝑥𝑗1𝑥𝑘2), 

                = |𝒙𝑗||𝒙𝑘|(cos 𝜃𝑗𝑘 − sin 𝜃𝑗𝑘),                    (4) 

 

in the case when arg 𝒙𝑘 is greater than arg 𝒙𝑗 , where 

arg x is the angle which the vector originated from the 

origin to x makes with the positive x-axis, and is assum- 

ed to take values ranging from 0 toπ. 

     Moreover, in a two-dimensional Euclidean space, Eq. (1)  

reduces to the following simple form in the case when q 

equals 1: 
   𝒙𝑗,𝑛+1 = 𝒙𝑗,𝑛 + 𝑤𝑗𝑘(𝒙𝑗,𝑛 − 𝒙𝑘,𝑛), 𝒙𝑘,𝑛+1 = 𝒙𝑘,𝑛 + 𝑤𝑘𝑗(𝒙𝑘,𝑛 − 𝒙𝑗,𝑛),  (5) 
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where 𝒙𝑗,𝑛 is the coordinate vector of member j at time n 

in the two-dimensional Euclidean space. 

      If members obey the basic principles assumed above, 

then the signs of 𝑤𝑗𝑘 and 𝑤𝑘𝑗 corresponding to those of 

𝑠𝑗𝑘  and 𝑠𝑘𝑗, respectively, must be chosen appropriately 

(Chino, 2016). 

 

Model III 

      A third type of model is the model in which 𝑤𝑗𝑘,𝑛
(𝑙,𝑚)

 is 

specified further in Model I.  That is,  

  𝒛𝑗,𝑛+1 = 𝒛𝑗,𝑛 + ∑ ∑ 𝑫𝑗𝑘,𝑛
(𝑚)

𝒇(𝑚)(𝒛𝑗,𝑛 − 𝒛𝑘,𝑛)𝑁
𝑘≠𝑗

𝑞
𝑚=1 , 𝑗 = 1, 2, ⋯ , 𝑁,      

(1) 

 𝒇(𝑚)(𝒛𝑗,𝑛 − 𝒛𝑘,𝑛) = ((𝑧𝑗,𝑛
(1)

− 𝑧𝑘,𝑛
(1)

)
𝑚

, (𝑧𝑗,𝑛
(2)

− 𝑧𝑘,𝑛
(2)

)
𝑚

, … , (𝑧𝑗,𝑛
(𝑝)

− 𝑧𝑘,𝑛
(𝑝)

)
𝑚

)
𝑡

,    

(2) 

and  

            𝑫𝑗𝑘,𝑛
(𝑚)

= 𝑑𝑖𝑎𝑔 (𝑤𝑗𝑘,𝑛
(1,𝑚)

, 𝑤𝑗𝑘,𝑛
(2,𝑚)

, … , 𝑤𝑗𝑘,𝑛
(𝑝,𝑚)

).                 

(3) 

    𝑤𝑗𝑘,𝑛
(𝑙,𝑚)

= 𝑎𝑛
(𝑙,𝑚)

𝑟𝑗,𝑛
(𝑙,𝑚)

𝑟𝑘,𝑛
(𝑙,𝑚)

sin (𝜃𝑘,𝑛
(𝑙,𝑚)

− 𝜃𝑗,𝑛
(𝑙,𝑚)

),   

l =1, 2, …, p,  m =1, 2, …, q.        (6) 

 

Here, 𝑎𝑛
(𝑙,𝑚)

 is a real constant, and 𝑟𝑗,𝑛
(𝑙,𝑚)

 and 𝜃𝑗,𝑛
(𝑙,𝑚)

 are, 

respectively, the norm and the argument of 𝒛𝑗,𝑛 at time 

n on dimension l.  As a result, 𝑤𝑗𝑘,𝑛
(𝑙,𝑚)

 is a real variable 

which depends on both 𝜃𝑘,𝑛
(𝑙,𝑚)

 and 𝜃𝑗,𝑛
(𝑙,𝑚)

.  Usually, it is 

assumed that both 𝑟𝑗,𝑛
(𝑙,𝑚)

 and 𝑟𝑘,𝑛
(𝑙,𝑚)

 are independent of 

m. 

As pointed out in Chino (2014b), however, the two 

terms, 𝑟𝑗,𝑛
(𝑙,𝑚)

 and 𝑟𝑘,𝑛
(𝑙,𝑚)

 are functions of 𝒛𝑗,𝑛 and its 

complex conjugate, �̅�𝑗,𝑛. This means that 𝒛𝑗,𝑛 in Eq. (1) 

is not a holomorphic function, since the complex 

conjugate of 𝒛𝑗,𝑛 is not differentiable in the complex 

space (e.g., Bak & Newman, 1982).  To overcome this 
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difficulty, we may consider the complex state space in 

this model as a 2p-dimensional Euclidean space. 

 

Model IV 
     We have recently considered another type of model in 

which two terms in Eq. (1), i.e., 𝐠(𝒖𝑗,𝑛) and 𝒛0, are 

added, the former being a control (e.g., Elaydi, 1999; Ott 

et al., 1990) and the latter a complex constant vector 

(Chino, 2015b).  Here, 𝐠(𝒖𝑗,𝑛) is a vector function of a 

complex vector 𝒖𝑗,𝑛. 

 

(4) Possible dynamical scenarios of solutions 

Figure 1 is a possible scenario of the solution of Model I, 

in which case 𝑤𝑗𝑘 =  0.01(1 + 𝑖), and 𝑤𝑘𝑗 = −0.02(1 + 𝑖). 

   
       Figure 1. Changes in trajectories of a dyad in a 

one-dimensional Hilbert space. 
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It shows the trajectories of a dyad in one-dimensional 

Hilbert space.  Two members A and B located at 1 and 

0.5i, respectively, approach to each other gradually, and 

converge to an equilibrium point. It is not so difficult to 

prove mathematically that these trajectories converge to a 

fixed point. 

          

     Figure 2 is another possible scenario of the solution of  

Model I, in which case N=3 (i.e., triadic relation), m=2.  

In this case, very complicated trajectories are observed. 

 

                

 
 

Figure 2.  Changes in trajectories of a triad in a one-dimen- 

sional Hilbert space. 
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   Figure 3.  Changes in trajectories of a dyad in a one- 

dimensional Hilbert space. (Model IV). 

                             

Figure 3 is the third possible scenario of the solution of  

Model IV, in which case N=2 (i.e., dyad relation), m=1, 

𝐠(𝒖𝑗,𝑛) = 𝟎 and 𝒛0 = 0.01𝑖.  In this case, both of the two 

trajectories diverge, as time proceeds. 

 

(5) Relations to dissipative structure and so on 

  Finally, we shall refer to the relations of our models 

discussed here to earlier works, mainly to works on 

dissipative structure.  Our models may be classified as a 

network model such as the perceptron (e.g., Rosenblatt, 

1958; Rumelhart et al., 1986), the recurrent neural 

network (RNN) (e.g., Hopfield, 1984; Sato, 1990), the 

automata (specifically, finite automata) (Kleene, 1956), the 

cellular automaton (e.g., von Neumann & Burks, 1966), 

the symbolic dynamics (e.g., Hedlund, 1969; Kitchens, 

1998), and so on. 
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      Although neural network models such as the 

perceptron, RNN, and finite automata include 

input-output units in principle, our models do not include 

them.  In this sense, our models are similar to the 

cellular automaton.  Moreover, both our models and the 

cellular automaton utilize a set of difference equations.  

However, the former is different from the latter in that the 

former utilizes (complex) Hilbert space as the state space 

of the system, while the latter does not. 

      In any case, our models enable us to depict various 

spatiotemporal structures of members of any group, which 

are considered to evolve through asymmetric interactions 

among members.  Changes in these spatiotempral 

structures through such interactions can be thought of as 

a self-organizing phenomenon.  In fact, an even simpler 

system described by one of our models can exhibit, for 

example, a fixed point behavior (Figure 1), a chaotic 

behavior, and so on.  Then, one might imagine dissipative 
structures to operate in such a phenomenon. 

     At present we can, at least, discriminate between a 

mathematical dissipative system by Levinson (1944) and 

the dissipative structure by Nicolis and Prigogine (1977).  

The former is a two-dimensional nonautonomous system 

which is periodic in t with period L and whose trajectories 

eventually lies inside of a circle with center at 0, as time 

proceeds. In contrast, the latter is attained in an open 

system far from the equilibrium.   

     In general, it seems to be not so easy to define such a 

kind of dissipative structure in the strict sense in the 

phenomena observed in the social and behavioral sciences 

which we deal with in our model.  However, it may be 

possible, at lease, to define a computational energy func- 
tion originated by Hopfield (1982) and used elsewhere 

(e.g., Grossberg, 1988; Müezzinoğlu et al., 2003).   
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