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1 Introduction

Many models have been reported for asymmetric multidimensional scaling (MDS) since
Young (1975) proposed ASYMSCAL. However, the asymmetric MDS has remained a
discriptive method, whereas the symmetric MDS has some inferential methods based
on the maximum likelihood (ML) method (for example Ramsay, 1977; Takane, 1981).
Although Chino (1992) proposed the framework of an ML method for the asymmetric
MDS which extended Takane’s (1981) model to asymmetric data, the algorithm of the
method has not been completed yet.

This study develops Chino’s (1992) method further and attempts to complete the
algorithm. Our method has three main advantages. First, it enables us to test the
symmetry hypothesis for the given similarity data. Second, we can compare the goodness
of fit of the data among some extant models for the asymmetric MDS using the Akaike
information criterion, AIC (Akaike, 1973, 1977). Third, it allows us to employ not only
the metric data but also nonmetric data.

2 The Method

2.1 Proposal of Models

According to Takane (1981), we will consider the three models, i.e., the representation
model, the error model, and the response model.
representation model Any model proposed for the asymmetric MDS may be basically

adopted as the representation model. For the present, however, we adopt the Hermitian
Form Model (HFM) (Chino & Shiraiwa, 1993), which considers the similarity as a kind of
inner product (precisely the Hermitian inner product) and embeds the objects in complex
space. Following the HFM, we define the proximity from object i to object j by

sij =
A∑

a=1

wa{(riarja + ciacja) + (ciarja − riacja)} + µ, (1)

where A is the dimensionality, wa is the weight on a-th dimension, and r and c are
the real and imaginary coordinates, respectively. We put the additive constant µ since
the HFM assumes the similarity matrix to be measured at the rational scale level. The
configuration of the HFM has the (semi) unitary constraint, which is examined in our



procedure.
error model The similarity sij in (1) is assumed to be error-perturbed by some psycho-

logical process. In our method sij can be either positive or negative theoretically, because
it is a kind of inner product. Thus, we consider only the additive error model of the two
error models proposed by Takane (1981), i.e.,

τ
(t)
ijk = sij + e

(t)
ijk, e

(t)
ijk ∼ N

(
0, σ2

k

)
, (2)

where τ
(t)
ijk is a psychological value for subject k corresponding to the proximity from

object i to object j at replication t.
response model We employ the successive categories scaling model (Torgerson, 1958),

following Takane (1981). Let a rating scale be composed of M observation categories
C1, C2, . . . , CM , and let bkm represent the upper boundary of the m-th category for subject
k. Under the normal distribution assumption made above, we may assume

−∞ = bk0 ≤ · · · ≤ bkm ≤ · · · ≤ bkM = ∞, (3)

and define the probability of a subject’s response by

pijkm = Pr(oijkr ∈ Cm) = Pr(bk(m−1) < τijk ≤ bkm) =
∫ bkm

bk(m−1)

f(τijk)dτijk, (4)

where oijkr is the proximity from object i to object j for subject k at replication r, and
f is the density function of the normal distribution.

Here we make three assumptions concerning these category boundaries, accoding to
Takane (1981): linear constraints without individual differences, unrestricted with indi-
vidual differences, and completely unrestricted. The latter two contraints correspond to
a nonmetric case.

2.2 Procedure

A subject’s response may be coded as

Zijkmr =

{
1, when oijkr ∈ Cm,
0, otherwise.

(5)

In order to estimate the vector of all parameters θ, we may maximize the logarithm of
the joint likelihood of the observations,

log L =
∑
k

∑
i, j

∑
m

Yijkm log pijkm, (6)

where Yijkm =
∑

r Zijkmr. Our procedure consists of two steps. In step 1, we estimate
the unrestricted parameters and test the symmetry hypothesis. If it is rejected, we go to
step 2, where we estimate the parameters under the unitary hypothesis and test it.
step 1 We estimate the unrestricted parameters θ∗ by Fisher’s scoring method in which

θ is updated by the following formula:

θ(q+1) = θ(q) + ε(q)I−1
θ(1)u(θ(q)), (7)



where (q) is the index of iteration number, ε is a step-size parameter, and u(θ) and Iθ

is respectively defined by

u(θ) =

(
∂ log L

∂θ

)
=
∑
k

∑
i, j

∑
m

Yijkm

pijkm

(
∂pijkm

∂θ

)
, (8)

and

Iθ = −E

(
∂2 log L

∂θ∂θt

)
=
∑
k

∑
i, j

∑
m

nijk

pijkm

(
∂pijkm

∂θ

)(
∂pijkm

∂θ

)t

, (9)

where nijk =
∑M

m=1 Yijkm. When Iθ is singular due to the nonuniqueness of the param-
eters, we may replace the regular inverse in (7) by the Moore-Penrose inverse, following

Takane (1981). Then, we test the symmetry hypothesis H
(1)
0 :

cia = 0, i = 1, 2, . . . , n; a = 1, 2, . . . , A, (10)

where n is the number of the objects. This hypothesis is equivalent to saying that there
are no asymmetric components in the data. We use the Wald method (Aitchison & Silvey,
1960), which is based on the statistic

ht(θ∗)
[
H t

θ∗I
−1
θ∗ Hθ∗

]−1
h(θ∗), (11)

where h(θ) is the vector in which the left-hand sides of (10) are arranged in order, and Hθ

is the matrix whose (i, j)-th component is ∂hj(θ)/∂θi. Under H
(1)
0 this statistic follows

the χ2-distribution with nA degrees of freedom asymptotically.
step 2 If H

(1)
0 is rejected in step 1, we find the estimates of the restricted parameters

θ† with the unitary hypothesis H
(2)
0 :



∑n

i=1(r
2
ia + c2

ia) − 1 = 0, a = 1, 2, . . . , A,∑n
i=1(riarib + ciacib) = 0, a < b = 2, 3, . . . , A,∑n
i=1(riacib − ribcia) = 0, a < b = 2, 3, . . . , A,

(12)

so that our model represents the HFM precisely. We use the Lagrange multiplier method
(Aitchison & Silvey, 1960), which updates θ by the following formula:

(
θ(q+1)

λ(q+1)

)
=

(
θ(q)

λ(q)

)
+

(
1

NT
Iθ(1) −Hθ(1)

−H t
θ(1) O

)−1( 1
NT

uθ(q) + Hθ(q)λ(q)

h(θ(q))

)
, (13)

where λ is the vector of the Lagrange multipliers, and NT is the total number of the
similarity judgements. As in step 1, h(θ) is the vector in which the left-hand sides of (12)
were arranged, and Hθ is the matrix whose (i, j)-th component is ∂hj(θ)/∂θi. Then, we

test H
(2)
0 by the statistic

ut(θ†)I−1
θ† u(θ†), (14)

which follows the χ2-distribution with A2 degrees of freedom asymptotically under H
(2)
0 .



2.3 Model Comparison

In this study we adopted the HFM, one of the non-distance models, as the representation
model. Of course, any other model may be adopted, for exapmle, Young’s (1975) ASYM-
SCAL in which the proximity from object i to object j is represented as the square of the
weighted Euclidian distance:

d2
ij =

A∑
a=1

wia(xia − xja)
2, wia ≥ 0, (15)

where wia is the stimulus weight of object i on a-th dimension. Then, the symmetry
hypothesis may be given by

wia − wi+1,a = 0, i = 1, 2, . . . , n − 1; a = 1, 2, . . . , A. (16)

For the given similarity data, we can compare the goodness of fit among some represen-
tation models, using AIC defined by

AIC = −2 log L + 2d.f., (17)

where d.f. is the effective number of parameters in a model (Akaike, 1973, 1977).

3 The Result

The result of applications to empirical data may be presented at the meeting.
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