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Organization of my talk

Today, I will talk about the developments in the past and future possibilities
of the asymmetric multidimensional scaling, abbreviated hereafter as asym-
metric MDS. The organization of my talk is as follows:

1. Introduction to symmetric and asymmetric MDS

First, I will briefly review the body of traditional work on asymmet-
ric MDS since Young (1975) proposed the ASYMSCAL, after a brief
look at the theory and an application of the symmetric MDS.

Then, I will introduce briefly some of the asymmetric MDS developed
recently. These include extensions of the traditional two-way asymmet-
ric MDS to the three-way MDS, versions of the traditional methods,
and so on. For some of these details, see Cox and Cox (2001).

2. Possible developments in the future

Next, I will show you three possible developments in the future.

• Developments of some inferential methods and statistics
One is to develop methods which enable the use of inferential
statistics such as those for testing various symmetry hypotheses
about the data under study.

• Linkage to the analysis of contingency tables
Another may be to consider the linkage of the asymmetric MDS to
the analysis of contingency tables. This enables to have its linkage
further, to the models developed in cognitive psychology. Although
Zielman & Heiser (1996) and De Rooij & Heiser (2005) have made
an inroad regarding this problem, their method is a mixture of
the analysis of contingency tables and the symmetric MDS, and is
designed basically for the count data, especially contingency tables.

• Linkage to the dynamical system theories
The other may be to make a linkage to the dynamical system
theories in mathematics. Chino & Nakagawa (1990) have made
an inroad regarding this problem. In order to develop this prob-
lem further, a Hilbert space theorem proven by Chino & Shiraiwa
(1993) may be useful. Some preliminary approaches to these prob-
lems will be shown.
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1 Introduction

Let me begin this lecture with a narrow definition of multidimensional
scaling by Cox and Cox (2001). According to them, it is the search for
a low dimensional space, usually Euclidean, in which points in the space
represent the objects, one point representing one object, and such that the
distance between the points in the space, match, as well as possible, the
original dissimilarities between the objects.

Asymmetric MDS is an extension of the traditional MDS to the asymmet-
ric relational data. Since the traditional MDS originated by Torgerson (1952)
deals with the symmetric relational data, I shall call it the symmetric MDS.

A famous example of the application of the symmetric MDS is a set of
flying mileages between 10 U.S. cities which appears in Kruskal and Wish
(1978).

Figure 1: A sas program for executing the MDS procedure

Given this set of data, say, the MDS procedure of SAS recovers the map
of the cities as follows (Fig.2). This means that the locations of objects are <Fig. 2
intelligible if we know the mutual distances between them in Euclidean space.
The reason for this is based on the famous Young-Householder theorem
(Young & Householder, 1938).

According to this theorem, a necessary and sufficient condition for a set
of numbers dij = dji to be the mutual distances of a real set of points in
Euclidean space is that the inner product matrix B whose elements bij are
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define by

bij =
1

2
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ij), (1)

be p.s.d., and in this case the set of points is unique apart from a Euclidean
transformation. Here, the origin is at point n.

For fallible data, it is usual that the origin is placed at the centroid of all
the objects. As a result, we revise the equation (1) as follows:
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Methods of fitting a lower dimensional set of points to a given set are also
available by utilizing the Eckart-Young theorem (Eckart & Young, 1936):

The symmetric MDS has been extended by many researchers since the
work of Torgerson, and has been applied to relational data in various branches
of science. The asymmetric MDS is considered as one such extension origi-
nated by Young (1975). His augmented distance model is written as

d∗
ij =

√√√√ r∑
t=1

wit(xit − xjt)
2, wit ≥ 0, (3)

where wit is the weight of object i on dimension t, xit is the coordinate of
object i on dimension t.

Since then, dozens of asymmetric MDS methods have been proposed. The
major traditional asymmetric MDS methods include Chino (1978, 1990),
Chino and Shiraiwa (1993), Constantine and Gower (1978), Escoufier and
Grorud (1980), Gower (1977), Harshman (1978), Harshman, Green, Wind,
and Lundy (1982), Kiers and Takane (1994), Krumhansl (1978), Okada and
Imaizumi (1987), Saito (1991), Saito and Takeda (1990), Sato (1988), To-
bler (1976-77), Weeks and Bentler (1982), Young (1975), Zielman and Heiser
(1993).

For example, the distance-density model by Krumhansl (1978) is writ-
ten as,

d∗
jk = djk + α δ(xj) + β δ(xk). (4)

where δ(xj) and δ(xk) are measures of spatial density in neighborhoods of
x and y, and α and β are constants that reflect the relative weight given the
above densities.

The following three augumented distance models are quite similar with
each other. These are the Weeks-Bentler model, the Okada-Imaizumi model,
and the Saito-Takeda model, and are written, respectively, as

d∗
jk = b djk + cj − ck + a, (5)
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d∗
jk = djk − rj + rk. (6)

and
d∗

jk = djk + θj + φk + γ. (7)

Here, the Okada-Imaizumi model is a special case of their most general
model, and is a nonmetric MDS. Saito (1991) generalizes the Saito-Takeda
model.

The GIPSCAL model (a generalized inner product MDS) originated by
Chino (1978, 1990) is written as

S = a XX t + bXLqX
t + c 1N1t

N + E. (8)

Here, the matrix Lq is a special q × q matrix written as

Lq = {εst}, (9)

where

εst =

⎧⎪⎨
⎪⎩

1, when the (· · · st · · ·) is the even permutation of (1 2 · · · q) ,
0, when the two subscripts s, t are the same ,

−1, when the (· · · st · · ·) is the odd permutation of (1 2 · · · q) .
(10)

The special case of GIPSCAL when the number of dimension is less than
or equal to 3, was first proposed by Chino (1978). Especially when the space
is two-dimensional, interpretation of the configuration obtained by GIPSCAL
is very simple. Table 1 shows an artificial data. In this table, assume that
the positive value indicates the positive sentiment and the negative value
the negative sentiment. Then, for example, member 4 likes member 1 very
much, but member 1 dislikes member 4 very much. Such a relationship is
represented as shown in figure 3.

Table 1: An artificial asymmetric data between 6 members

rater\ratee 1 2 3 4 5 6
1 1 1 −1 −1 0 1/2

2 −1 1 1 −1 −√
2 −1/2

3 −1 −1 1 1 0 −1/2

4 1 −1 −1 1
√

2 1/2

5
√

2 0 −√
2 0 1

√
2/2

6 1/2 1/2 −1/2 −1/2 0 1/2

As shown in this figure, the skewness between members 1 and 4 is the
greatest of all, as the angle between the lines M0M1 and M0M4 is π/2. For,
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Figure 3: The assumed configuration of 6 members

in GIPSCAL we generally represent the absolute value of the skewness of
members i and j by twice the area of the triangle with vertices M0, e.g., the
origin, Mi, and Mj . This idea is the same as that of the Gower Diagram by
Gower (1977).

In GIPSCAL, we can read another important information from its graph-
ical output. It is the direction of skewness between members. In this figure,
it is counter-clockwise. From this information, it is easy for us to see that
member 4 likes member 1, but member 1 dislikes member 4.

The DEDICOM (DEcomposition into DIrectional COMponents) model
proposed by Harshman (1978) is written as

S = Y AY t + E. (11)

where Y is an n×p loading matrix of objects and A is a p×p matrix whose
elements represent the directional relationships between dimensions.

The Complex Coding proposed by Escoufier & Grorud (1980), which I
later call the Hermitian canonical model, is written as

sjk(s) ≈ λ1 (uj1uk1 + vj1vk1), (12)

sjk(sk) ≈ λ1 (vj1uk1 − uj1vk1), (13)

where sjk(s) and sjk(sk) are are the symmetric part and the skew-symmetric
part of the original similarity data matrix S, respectively. Note that

S = {sjk} =
1

2
(S + St) +

1

2
(S − St) = Ss + Ssk. (14)
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Chino & Shiraiwa (1993) deduced essentially the same model independently
using the different approach from their approach, and called it HFM (the
Hermitian Form Model). This is written as

H = XΩsX
t + i XΩskX

t, (15)

where H is a Hermitian matrix,

H = Ss + i Ssk, (16)

constructed uniquely from any square asymmetric matrix S, and

Ωs =

(
Λ, O3

O3, Λ

)
, Ωsk =

(
O3, −Λ
Λ, O3

)
. (17)

Equation (15) is rewritten, in real form, as

sij =
r∑

l=1

λl (rilrjl + cilcjl) +
r∑

l=1

λl (cilrjl − rilcjl), (18)

Chino and Shiraiwa (1993) have shown that the complex counterparts
of DEDICOM, GIPSCAL, HCM (e.g., Complex Coding), and other possible
models of H are expressible in terms of finite-dimensional complex Hilbert
space if H is p.s.d. This result motivates the Chino-Shiraiwa theorem,
which is a generalization of the Young-Householder theorem to the complex
case.

According to this theorem, a necessary and sufficient condition for a set
of numbers dij (= dji) and d̄ij to be the mutual distances of a real set of
points in Hilbert space is that the Hermitian scalar product matrix H whose
elements hij are define by

hij =
1

2
(d2

io + d2
jo − d2

ij) +
1

2
i (d2

io + d2
jo − d̄2

ij), 1 ≤ i, j ≤ n. (19)

be p.s.d., and in this case the set of points is unique apart from a Unitary
transformation. Here, the subscript o indicates the origin.

Here, dij and d̄ij are defined, respectively, as

dij = ‖vi − vj‖, 1 ≤ i, j ≤ n, (20)

and
d̄ij = ‖vi − i vj‖, 1 ≤ i, j ≤ n, (21)

where vi(1 ≥ i ≥ n) be the row vector of order r, which corresponds to the
i-th row of U 1 in the following equation

H = U 1ΛU ∗
1. (22)
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Here, U 1 is a semi-unitary matrix composed of the r column vectors corre-
sponding to the eigenvectors associated with the non-zero eigenvalues of H .
U ∗

1 is the conjugate transpose of U 1. Moreover, Λ is the diagonal matrix
whose diagonal elements are these eigenvalues with the descending order. It
should be noticed that the following two equations hold for equations (20)
and (21):

dij = dji, 1 ≤ i, j ≤ n, dii = 0, 1 ≤ i ≤ n, (23)

d2
io + d2

jo − d̄2
ij = −(d2

jo + d2
io − d̄2

ji), 1 ≤ i, j ≤ n, (24)

As far as we are concerned with the spatial representation of the asym-
metric relationships contained in the data, it is unnecessary to consider the
complex space structure shown in this theorem, and thus we may apply the
Complex Coding to the data. However, if we examine the dynamical aspect
of the data, that is, changes in the distance structure over time, it will be very
useful and convenient to utilize such a complex structure. For, we may utilize
the theories of the complex difference system in mathematics. Later, I
will show you a preliminary application of this system to the interpersonal
attraction data.

Recently, some researchers have been extending the asymmetric MDS fur-
ther. For example, Okada and Imaizumi (1997) extended their two-way non-
metric MDS to a three-way case. Yadohisa and Niki (1999) propose a vector
field representation of asymmetric proximity data, especially the scalar po-
tential of the field. Trendafilov (2002) reformulates the GIPSCAL into an
initial value problem for matrix ordinary differential equations on manifolds
defined by the constraints of the original least-squares problems. Rocci and
Bove (2002) generalize the Complex Coding, and discuss relations to other
works of Chino (1990), Harshman (1978), and Kiers and Takane (1994).

Anyway, I will not go into details of the recent developments in the asym-
metric MDS for the time limitation. Instead, I will concentrate on some pos-
sible developments in the future on the asymmetric MDS, which I have partly
been developing with my colleagues. One of them is the developments of some
inferential methods and statistics for the asymmetric MDS. Another is con-
cerned with the linkage of the asymmetric MDS to the analysis of contingency
tables by developing further the successive categories symmetric multidimen-
sional scaling originated by Takane (1981). The other is concerned with the
linkage of the asymmetric MDS to the dynammical system theories in math-
ematics. As for this, I will show you two preliminary studies, one utilizing
the qualitative theories of differential dynamical systems and the other
using the difference dynamical systems.

2 Possible developments in the future

Now, I will show you three possible developments in the future.
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2.1 Developments of some inferential methods and statis-
tics

As discussed above, dozens of asymmetric MDS models have been proposed
since the work of Young. However, the asymmetric MDS has remained a dis-
criptive method, whereas the symmetric MDS has some inferential methods
based on the maximum likelihood (ML) method (for example Ramsay, 1977;
Takane, 1981). Although Chino (1992) proposed the framework of an ML
method for the asymmetric MDS which extended Takane’s (1981) method to
asymmetric data, its algorithm has not been completed yet. However, Saburi
& Chino (2004) have recently developed Chino’s (1992) method further. We
call it ASYMMAXSCAL.

ASYMMAXSCAL has three major advantages. First, it enables us to
test the symmetry hypothesis for the given similarity data. Second, we can
compare the goodness of fit of the data among some extant models for the
asymmetric MDS using the Akaike information criterion, AIC (Akaike, 1973,
1977). Third, it allows us to employ not only the metric data but also non-
metric data. We shall summarize it next.

In this method, we consider the three models, i.e., the representation
model, the error model, and the response model. Any model proposed previ-
ously for the asymmetric MDS may be basically chosen as the representation
model. In this study, we choose HFM discussed above. So, we shall call it
ASYMMAXSCAL-HFM. In order to distinguish the sij as the error perturbed
data with those as the true value, we shall revise the representation model
as

gij =
r∑

l=1

λl (rilrjl + cilcjl) +
r∑

l=1

λl (cilrjl − rilcjl), (25)

indtead of equation (18) in this context.
In this way, the similarity gij in our model is assumed to be error-perturbed

by some psychological process. In this method gij can be either positive or
negative theoretically, because it is a kind of inner product. Thus, we consider
only the additive error model of the two error models proposed by Takane
(1981), i.e.,

τ
(t)
ijk = gij + e

(t)
ijk, e

(t)
ijk ∼ N

(
0, σ2

k

)
, (26)

where τ
(t)
ijk is a psychological value for subject k corresponding to the prox-

imity from object i to object j at replication t.
As a response model, we employ the successive categories scaling model

(Torgerson, 1958), following Takane (1981). Let a rating scale be composed
of M observation categories C1, C2, . . . , CM , and let bkm represent the upper
boundary of the m-th category for subject k. Under the normal distribution
assumption made above, we may assume

−∞ = bk0 ≤ · · · ≤ bkm ≤ · · · ≤ bkM = ∞, (27)
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and define the probability of a subject’s response by

pijkm = Pr(oijkr ∈ Cm) = Pr(bk(m−1) < τijk ≤ bkm) =
∫ bkm

bk(m−1)

f(τijk)dτijk,

(28)
where oijkr is the proximity from object i to object j for subject k at repli-

cation r, and f is the density function of the normal distribution.
Here we make three assumptions concerning these category boundaries,

accoding to Takane (1981): linear constraints without individual differences,
unrestricted with individual differences, and completely unrestricted. The
latter two contraints correspond to a nonmetric case.

In order to estimate the vector of all parameters θ, we may maximize the
logarithm of the joint likelihood of the observations,

log L =
∑
k

∑
i, j

∑
m

Yijkm log pijkm, (29)

where Yijkm =
∑

r Zijkmr, and Zijkmr is the subject’s response coded as

Zijkmr =

{
1, when oijkr ∈ Cm,
0, otherwise.

(30)

The maximization procedure is essentially the same as that of Takane (1981).
That is, we estimate the unrestricted parameters θ∗ by Fisher’s scoring method.

Then, we may test a symmetry hypothesis H
(1)
0 :

cia = 0, i = 1, 2, . . . , n; a = 1, 2, . . . , A, (31)

where n is the number of the objects. This hypothesis is equivalent to saying
that there are no asymmetric components in the data. We use a well-known
χ2 statistic. This test completely depends on the three models, that is, the
representation model, the error model, and the response model.

We may construct another symmetry hypothesis. This is accomplished
by introducing another representation model. We call it a saturated rep-
resentation model, in which gij themselves are regarded as the parameters
to be estimated from the data. In this case, the test depends only on the
error model and the response model. In this case, the symmetry hypothesis
is defined as

gij = gji, (1 ≤ i < j ≤ n). (32)

If we choose the test of this hypothesis, we can test it prior to the estimation
of all the parameters of the model.

For the given similarity data, we can compare the goodness of fit among
some representation models, using AIC defined by

AIC = −2 log L + 2d.f., (33)

where d.f. is the effective number of parameters in a model (Akaike, 1973,
1977).
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Now, we shall show you an example of the application of our method
to a set of the data gathered by Saburi and Chino (2005). 163 subjects
watched an animation movie called “Kurenai no Buta” which means “The
Crimson Pig” produced by Hayao Miyazaki, a famous Japanese animation
film producer, in which interpersonal relationships develop gradually between
5 major characters. The leading character is called Porco, who is an airborne
pilot on the Adriatic in the 1920’s. At the middle and the end points of the
movie, subjects rated how characters liked or disliked one another including

Table 2: Cross-classified table for 5 characters in Category 2 (dislike fairly)

rater\ratee 1.Boss 2.Curtis 3.Fio 4.Gina 5.Porco total
1.Boss 3 26 0 0 40 69
2.Curtis 8 1 1 1 35 46
3.Fio 19 36 0 1 0 56
4.Gina 3 9 2 7 0 21
5.Porko 15 11 0 0 28 54
total 48 83 3 9 103 246

Table 3: Cross-classified table for 5 characters in Category 6 (like fairly)

rater\ratee 1.Boss 2.Curtis 3.Fio 4.Gina 5.Porco total
1.Boss 37 2 53 46 2 140
2.Curtis 1 44 61 67 0 173
3.Fio 1 1 46 14 60 122
4.Gina 0 1 7 15 53 76
5.Porko 4 1 75 56 12 148
total 48 83 3 9 103 659

themselves on 7-point rating scales. Tables 2 and 3 show two-way frequency
tables for categories C2 (dislike a person fairly) and C6 (like a person fairly),
respectively.

We first chose the saturated model as a representation model and com-
puted its estimates. Then we tested the symmetry hypothesis and found it to
be rejected under both the ordinal and interval scale assumptions (χ2(10) =
1966·76, p < 0·0001; χ2(10) = 1842·89, p < 0·0001, respectively). Next,
we chose HFM as another representation model and computed its estimates
under the unitary constraint. The minimum value of AIC was attained in the
case of three dimensionality under the ordinal scale assumption. In HFM, one
(complex) dimension is equivalent to two-dimensions in the real space. Fig-
ure 4 is the estimated configuration of 5 characters with the 95% asymptotic
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confidence regions for each of the locations of objects in the first complex
dimension.
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Figure 4: Stmulus configuration of the first dimension with 95% confidence
regions

In interpreting the configuration obtained by HFM, it should be noted
that the direction of the skew-symmetry can be determined by the sign of the
weight of the model as is the case with GIPSCAL discussed above, and that
the positive direction is clockwise if the weight is positive in contrast with
GIPSCAL. Since the estimated weight was positive for the first dimension,
this direction is clockwise in this case. From figure 4, we see, for example,
that Curtis likes Fio and Gina very much, and conversely they dislike him
very much.
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2.2 Linkage to the analysis of contingency tables

Another possible development of the asymmetric MDS may be to consider the
linkage of the asymmetric MDS to the analysis of contingency tables. As dis-
cussed above, our symmetry hypotheses are in a sense restrictive in that these
hypotheses are dependent on some or all of the models in ASYMMAXSCAL.
This is partly because we don’t restrict the data within count data.

However, introduction of the idea of the successive categories scaling in
MDS enables us to build the bridge between qualitative data, e.g, the count
data, and the quantitative data, e.g., data with the ordinal, intervarl, or
ratio level of measurement. In fact, as I have presented at the talk of the
2nd German-Japanese Symposium on Classification the other day, the data
which our ASYMMAXSCAL requires are considered as the result of the Type
A design of Figure 5.

Type A Type B

pair C1 C2 · · · CM total

11 Y111 Y112 · · · Y11M n11

12 Y121 Y122 · · · Y12M n12

...
...

...

nn Ynn1 Ynn2 · · · YnnM nnn

total n1 n2 · · · nM N

1 2 · · · n
1

2
···

n

{Yij1}
�

�
�

��

�
�

�
��

C1

total
n1{Yij2}

�
�

�
��

�
�

�
��

C2

n2

...
...

...

{YijM}
�

�
�

��

�
�

�
��

CM

nM{nij}
�

�
�

��

�
�

�
��

total

N

Figure 5: Two types of the sampling design for the method of successive
categories scaling in ASYMMAXSCAL

The Type A design assumes that each row (Yij1, Yij2, . . . , YijM) follow,
say, a multinomial distribution with parameter nij which is fixed and certain
cell probabilities pij1, pij2, . . . , pijM . This design is nothing but the sampling
design peculiar to our ASYMMAXSCAL as well as MAXSCAL by Takane
(1981).
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By contrast, the Type B design assumes that all the entries of each of
the two-way contingency tables, that is, {Yijm} follow, say, a multinomial
distribution with parameter nm =

∑n
i

∑n
j Yijm which is fixed and certain cell

probabilities p11m, p12m, . . . , pnnm, where m indicates the mth rating category.
Moreover, it is assumed that M two-way contingency tables are mutually
independent. This design is the traditional design for the special three-way
contingency table, that is, the n×n×M table (Bishop, Fienberg, & Holland,
1975; Read, 1978).

These two designs differ somewhat, and generally lead to slightly different
LR χ2 statistics. Recently, Saburi & Chino (2006, submitted paper) have
proven a relationship between the two statistics.

Anyway, we can test a third symmetry hypothesis, e.g., conditional sym-
metry hypothesis,

H
(cs)
0 : pijm = pjim, (1 ≤ i < j ≤ n; 1 ≤ m ≤ M − 1). (34)

Although Read calls the corresponding hypothesis “symmetry within lev-
els”, we shall follow Bishop, Fienberg, and Holland (1975) and call it the
conditional symmetry. This kind of conditional symmetry test was suggested
by Takane (2005, personal communication). This hypothesis is completely
independent on any of the threee models of ASYMMAXSCAL.

Given a two-way square contingency table, Zielman and Heiser (1996) sug-
gest a usual test of symmetry originated by Bowker (1948) in discussing the
models of asymmetric proximities, while de Rooij & Heiser (2003, 2005) test
not only this symmetry hypothesis but also a usual quasisymmetry hypoth-
esis. By contrast, we assume a more general situation where the data is
obtained either at an ordinal, interval, or ratio level. Moreover, our target of
the analysis is on the special three-way table.

Of course, we can utilize the traditional key concepts on the analysis of
contingency table in statistics further. In this case, such an analysis can be
viewed as a preprocessing step of our ML asymmetric MDS, that is, ASYM-
MAXSCAL. The test of conditional symmetry suggested by Takane is one
such analysis. If we analyze this table in line with this, we can utilize some
basic, and important tests for symmetry and related tests in addition to the
symmetry test suggested by him.

These tests are those of quasisymmetry, marginal homogeneity, quasi-
independence, independence, and a log-linear hypothesis. Combina-
tions of these tests enable us not only to diagnose the validity of applying
any asymmetric MDS to the asymmetric relational data matrices but also
to examine various types of symmetry and asymmetry contained in square
contingency tables. Such a result might serve as an indirect examination of
the cause of asymmetry contained in the n × n × M contingency table. The
notion of quasisymmetry introduced by Caussinus (1965) plays an important <Fig.6
role in such an examination, as shown in Figure 6.
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Figure 6 illustrates a hierarchical structure of these tests. As pointed out,
for example, in Andersen (1980), there exists a strict hierarchical order in
some of these tests as to which hypotheses must be tested first and which
hypotheses must be tested under the assumption that other hypotheses hold.
This order is, of course, concerned with the tests of the log-linear hypotheses
on independence, that is, HI , H1, H2, in Figure 6.

Considering the purpose of applying some asymmetric MDS to the re-
lational data, it will be necessary and appropriate to test the conditional
symmetry discussed above, first. If it is accepted, we had better apply a cer-
tain traditional symmetric MDS to the data. If the conditional symmetry
hypothesis stated above is rejected, we may proceed to the test for quasisym-
metry. As we are now dealing with a three-way table, it may be appropriate
to call it the test for conditional quasisymmetry. Then, we may proceed
to some appropriate tests following the flow shown in Figure 6, starting from
this hypothesis.

In this figure, various hypotheses are indicated in the lozenge diagram.
HQS means the quasisymmetry hypothesis, HQI the quasiindependence, HMH

the marginal homogeneity, HI the usual independence, H1 the row effect and
H2 the column effect of the log-linear model.

At a glance, we can notice the followings:

1. There exist four types of symmetry under the quasisymmetry and the
marginal homogeneity hypotheses:

a) R1 – independent, neither the row nor the column effect exists.

b) R4 – independent, both the row and the column effects exist.

c) R6 – dependent.

d) R8 – quasidependent.

2. There exist five types of asymmetry when the quasisymmetry hold but
the marginal homogeneity does not hold:

a) R2 – independent, and the column effect only.

b) R3 – independent, and the row effect only.

c) R5 – independent, and both of the row and the column effects hold.

d) R7 – dependent.

e) R9 – quasidependent.

3. There exist the other two types of asymmetry when the quasisymmetry
does not hold:

a) R10 – the marginal homogeneity holds.

b) R11 – the marginal homogeneity does not hold.
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It is interesting to note that the causes of statistical asymmetry under
the quasisymmetry hypothesis are restricted within the row and the col-
umn effects or dependency of ratings between rater and ratee. Moreover,
it is important to notice that if the conditional quasisymmetry hypothesis
is accepted, it will be appropriate to choose one of the augmented distance
models for asymmetric MDS as a subsequent analysis because they are con-
gruous with the quasisymmetry hypothesis. Otherwise, it will be necessary to
choose one of the non-augmented distance models such as GIPSCAL, Com-
plex coding or HFM, Sato’s asymmetric Minkofsky metric model.

Now, we shall show an example of the application of the hierarchical tests
discussed above to a set of the data gathered by Saburi and Chino (2005),
two of which have already been shown in this talk. These are examples of
the two-way tables shown as the Type B data in Figure 5. Strictly speak-
ing, however, such a sampling might not necessarily fulfill the assumption of
mutual independences of the judgments for all pairs of objects in principle.

Therefore, it might be necessary to check whether these judgments are
independent or not. To do so, we performed the usual Pearson type χ2 test
of independence of the ratings, shown as Type A design data in Figure 5,
for all the combinations of pairs of objects. Since the number of objects is
five, we have 20 combinations of pairs, and 190 7 × 7 contingency tables.
Since many of these contingency tables included random zeros, we used the
Yates’ correction for continuity. As a result, about 85 percentages of these
contingency tables were considered to be independent.

Table 4: Tests of symmetry for the Crimzon Pig data

χ2, p-value, & d.f. G2 p-value X2 p-value d.f.
C1 55.69 p<0.001 45.26 p<0.001 10
C2 115.29 p<0.001 95.26 p<0.001 10
C3 175.58 p<0.001 137.57 p<0.001 10
C4 329.68 p<0.001 289.84 p<0.001 10
C5 203.99 p<0.001 180.93 p<0.001 10
C6 294.76 p<0.001 224.28 p<0.001 10
C7 274.66 p<0.001 216.45 p<0.001 10

total 1449.65 p<0.005 1189.59 p<0.005 70
(revised) (60)

Tables 4 and 5 are the results of the tests of symmetry and quasisymmetry,
respectively. Not only the overall symmetry hypothesis, that is, the condi-
tional symmetry hypothesis, but also the component symmetry hypotheses
are rejected as shown in Table 4. Therefore, we may proceed to the test of
quasisymmetry. Table 5 shows the result. The overall test of quasisymmetry,
that is, the conditional quasisymmetry, is rejected, even if we administer the
Yates’ correction of continuity to the data. In such a case, we generally had
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better choose some non-augmented distance model. However, Table 5 shows
a somewhat complicated result in that some of the component quasisymmetry
hypotheses hold for this set of data.

Table 5: Tests of quasisymmetry for the Crimzon Pig data

χ2, p-value, & d.f. G2 p-value X2
Y p-value d.f.

C1 5.42 - 0.58 - 6
C2 8.76 - 4.15 - 6
C3 9.07 - 5.03 - 6
C4 68.92 p<0.001 50.20 p<0.001 6
C5 36.30 p<0.001 31.99 p<0.001 6
C6 32.63 p<0.001 46.66 p<0.001 6
C7 0.49 - 0.00 - 6

total 161.60 p<0.005 138.61 p<0.005 42
(revised) (36)

X2
Y indicates the Pearson χ2 with Yates’ correction for continuity.

Table 6: LR χ2(G2) for various symmetry and a related test of the cross
tables for C2 & C6 by SAS, which are shown in Tables, 1 and 2

hypothesis G2 for C2 G2 for C6 d.f.
1.Hs 115.29, p<0.001 294.76, p<0.001 10
2.HQS 8.76 32.63, p<0.001 6
3.HQI 90.23, p<0.001 186.82, p<0.001 11
4.HI 176.43, p<0.001 0.00, p<0.001 16
5.H1 29.28, p<0.001 704.69, p<0.001 4
6.H2 189.28, p<0.001 452.14, p<0.001 4
7.HMH 293.747, p<0.001 (659.00), p<0.001 3

In this table, (659.00) indicates that the LR χ2 statistic cannot be estimated
due to error, so the Pearson χ2 was computed in place of it.

Therefore, we have tentatively tested some other hypotheses for each of
the two-way contingency tables corresponding to each of the rating categories,
according to the flow chart drawn in Figure 6. Table 6 shows the LR χ2(G2)
for various symmetry tests and a related test for cross tables for rating cate-
gories C2 and C6.

As for category C2, that is, judgments of “dislike a person fairly”, the
quasisymmetry hypothesis holds. Thus, we proceed downward to test the
subsequent hypotheses according to Figure 6. This examination leads us to
the conclusion that the component quasisymmetry hypothesis holds for this
table, but the marginal homogeneity does not.
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As regards category C6, that is, judgments of “like a person fairly”, none
of the hypotheses under study holds, as shown in the right-hand side of Table
6. That is, neither the quasisymmetry nor the marginal homogeneity holds
for this table.

2.3 Linkage to the dynamical system theories

The other possible development of the asymmetric MDS may be to consider
the linkage of the asymmetric MDS to the dynamical system theories in math-
ematics.

2.3.1 Differential dynamical system

I will first talk about a preliminary work conducted by Chino & Nakagawa
about twenty years ago (Chino & Nakagawa, 1983, 1990). We call it the
DYNASCAL, which is an abbreviation of the DYNAmical system SCALing. <Tab.7

Before proceeding, I wiil show you an example of the data for this method.
About fourty years ago, famous social psychologist, T. M. Newcomb observed
an acquaintance process of 17 previously unacquainted male students, who
lived together in a fraternity-style house, expenses paid. The obtained self-
reports of complete rank orderings of the other 16 by attraction during each
of the 16 weeks of experiment are a set of longitudinal sociomatrices. Table
7 shows the sociomatrices at Weeks 1 and 2.

If we apply a certain asymmetric MDS to each of these sociomatrices, we
obtain a set of longitudinal configurations of members. A glance at these
configurations will raise various questions concerning the group formation
processes:

1. What is the fundamental law which governs the formation processes?

2. How can we uncover the underlying dynamics of the system composed
of members who interact with each other?

3. What kinds of dynamics are theoretically possible in such a system?

4. What kinds of dynamics are observable and what kinds of dynamics are
not in such a system?

5. What are the determinants of group formation and dissolution?

6. Is it possible to predict and control group formation-dissolution pro-
cesses?

DYNASCAL answers some of such questions by estimating the latent
qualitative as well as quantitative aspects of the dynamical system, given
a set of longitudinal asymmetric relational data matrices. To do this job,
DYNASCAL assumes the followings:
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1. Dimension of the space
For simplicity, we assume that the dimension of the space is 2.

2. State variables
State variables of our system are coordinates of objects at each time,

and are estimated from data.

3. Hyperbolicity
This assumption guarantees that our system is locally structurally

stable, and may be rational since orbital property of a structurally un-
stable system changes by a small perturbation and therefore can not
be observed by any method which accompanies measurement errors or
computation errors.

4. Boundary condition — closed region whose boundary is a simple
smooth curve

This is a necessary condition for the system to be globally structurally
stable under some general conditions (Peixoto, M. C., and Peixoto, M.
M., 1959).

5. System — general nonlinear nonautonomous system:

(
dx/dt
dy/dt

)
=

(
f(x, y, t)
g(x, y, t)

)
. (35)

Here, we assume that m bifurcation parameters of the following au-
tonomous system have all been projected onto the time axis, t, of the
above system. Thus, the above nonautonomous system will be revised
at any time when we will be able to identify such parameters. Moreover,
we will neither specify the forms of f nor g a priori. Instead, we will
estimate these forms indirectly from data, that is, a set of longitudinal
relational data matrices:(

dx/dt
dy/dt

)
=

(
f(x, y, c1, c2, · · · , cm)
g(x, y, c1, c2, · · · , cm)

)
. (36)

Now, at any instant of time, t = c, the specified system, that is, Eq. (35),
can be viewed as the following nonlinear autonomous system:

(
dx/dt
dy/dt

)
=

(
f(x, y)
g(x, y)

)
. (37)

Then, its local orbital properties can be examined by linearizing the sys-
tem at a special point x∗ called singularity or singular point defined as
follows (Hirsch & Smale, 1974):

(
dx/dt
dy/dt

)
= J(x∗)

(
x
y

)
, (38)
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where

J(x∗) =

(
∂f/∂x, ∂f/∂y
∂g/∂x, ∂g/∂y

)
x=x∗

. (39)

J(x∗) is called the Jacobian of singularity x∗.
Here, in general, a singularity is the point at which first-derivatives all

vanish. In the case of Eq. (37), the x∗ is a solution of

(
dx/dt
dy/dt

)
=

(
f(x, y)
g(x, y)

)
=

(
0
0

)
. (40)

If the determinant of the Jacobian is zero at a singularity, it is called the
degenerate singularity. <Fig. 7

Figure 7 shows fundamental nondegenerate singularities and qualitative
behaviors of the system near these singularities. Here, it should be noted that
one of them, e.g., the center, cann’t be observed in principle. The reason is
as follows:

According to the Hartman and Grobman theorem (for example, Gucken-
heimer & Holmes, 1983), the vector field is locally structurally stable if
the Jacobian of the system at a singularity has non-zero real part (that is,
if the singularity is hyperbolic). In figure 7, only the ”center” has zero real
parts. Thus, the ”center” is structurally unstable and can’t be observed.
Degenerate singularities are also structurally unstable. <Fig. 8

Nonlinear systems like Eq. (37) have another sort of local orbital property.
It is called the limit cycle. Figure 8 shows two fundamental limit cycles.
We can also interpret these behaviors of limit cycles psychologically (Chino,
1988).

Let us now suppose that there exists a certain factor which influences the
force field under study and the value of the factor changes continuously by
the complicated interactions among individuals or some influence from outside
the system. Mathematically, such a factor is called a bifurcation parameter.
Temperature μ is one such example in Hopf bifurcation.

Here, it should be remembered that our system described by Eq. (35)
is nonautonomous, and thus it has no bifurcation parameter. However, one
can think of successive vector fields described by the nonautonomous system
as changes in the vector field described by an autonomous system over time.
Then, no problem arises in applying the bifurcation theory to the estimated
system. Thus, let us for a while consider the following autonomous differential
equation with one bifurcation parameter, c:

(
dx/dt
dy/dt

)
=

(
f(x, y, c)
g(x, y, c)

)
. (41)

Four kinds of bifurcations are the best known local bifurcations which
depend on a single parameter in a two-dimensional system (Guckenheimer et
al., 1983). Two of them is shown in Figure 9. Another type of bifurcation <Fig. 9

<Fig.
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is called the global bifuracation. They are shown in Figure 10.
Finally, I will show you an example of application of DYNASCAL to the

Newcomb data. As a preprocessing of original ranking data, MULTISCAL
(Ramsay, 1982) was applied to each of the 15 sociomatrices (Week 9 was
missing in Newcomb’s data) in this case, and longitudinal two-dimensional
configurations were obtained. <Fig.

11Application of DYNASCAL yields 15 estimated vector fields correspond-
ing to 15 weeks (Chino, 1984). However, I will show only two of them. Figure
11 show these vector fields at Weeks 0 and 15, respectively. Traditional so-
ciograms corresponding to them are also shown in these figures (Chino, 1984).
In these vector fields, numbers indicate the locations of members, and vec-
tors show the estimated velocity vectors at some grid points. Some orbits
of the estimated system are shown to facilitate understanding of the global
qualitative features of each of the vector fields.

In Figure 11-above, we have two singularities, a saddle and a source.
The saddle clearly divides the left-upper part and the right-lower part of the
space. The former includes members 1, 5, 6, 8, 13. The latter includes almost
all remaining members except member 10. These results almost coincide with
those obtained by depicting traditional sociograms for this set of data.

An important point is that estimated vector fields in general convey much
more dynamic information about each individuals as well as group structure
than traditional sociograms. For example, the vector field in Figure 11 tells
us that member 10 is under an unstable circumstance in the sense that only
a small change in location leads him either to the left upper part or to the
right lower part of the psychological space. This reflects the instability of
the singularity, saddle.

Another dynamic information is obtained by noting an omega limit cycle
in the upper region of the field. This limit cycle dissapears at the next week.
Therefore, we may suppose that the once born group formation process is
dissolving. By contrast, Figure 11-below may indicate that the overall group
dissolution processes are going on.

2.3.2 Difference dynamical system

If we assume that the state space in which members interact is complex, one
way is to utilize some difference equation models instead of differential equa-
tion models. I will summarize a preliminary work of mine which is concerned
with this kind of models (Chino, 2005).

As discussed above, DYNASCAL has several advantages over some tradi-
tional methods for analyzing group structures, i.e., sociograms and Markov
process models for social networks (for example, Holland & Leinhardt, 1977).
On the other hand, DYNASCAL has several disadvantages, too.

Firstly, it presupposes asymmetric relationships between members but the
estimated relationships are symmetric. Secondly, it might not be fully justi-
fied mathematically to administer the Procrustes rotations to the neighboring
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pairs of configurations. Thirdly, DYNASCAL will not capture the so-called
chaotic behaviors since it is restricted to a two-dimensional differential sys-
tem. Fourthly, it is not possible for DYNASCAL to examine the behaviors of
the system theoretically, since it merely estimates the solution curves using
spline functions.

To overcome these difficulties, Chino (2002, 2003a) has proposed some
complex diference system models for social interaction. The most general
form of these models is a general nonlinear model written as

zj,n+1 = zj,n

+
r∑

m=1

N∑
k �=j

D
(m)
jk,n f (m)(zk,n − zj,n),

j = 1, 2, · · · , N, (42)

where,

f (m)(zk,n − zj,n) =

⎛
⎜⎜⎜⎜⎜⎝

(z
(1)
k,n − z

(1)
j,n)

m

(z
(2)
k,n − z

(2)
j,n)

m

...

(z
(p)
k,n − z

(p)
j,n)

m

⎞
⎟⎟⎟⎟⎟⎠ . (43)

Moreover, D
(m)
jk,n = diag

{
w

(1,m)
jk,n , · · · , w(p,m)

jk,n

}
, and

w
(l,m)
jk,n = a(l,m)

n r
(l,m)
j,n r

(l,m)
k,n sin (θ

(l,m)
k,n − θ

(l,m)
j,n ),

l = 1, 2, · · · , p, m = 1, 2, · · · , r. (44)

It should be noticed that the state space of this model is not real but
complex. Moreover, this model is composed of a set of multivariate com-
plex difference equations. Our multivariate complex system models for
social interaction may be naturally introduced applying the idea of HFM,
which is a one-mode two-way asymmetric MDS (Chino & Shiraiwa, 1993), to
longitudinal asymmetric relational data.

It is well known that difference equation models sometimes exhibit com-
plicated chaotic behaviors even in the case of a simple real nonlinear equation
such as, xn+1 = (1 + r)xn − rx2

n, which is the famous Verhulst process (for
example, Peitgen & Richter, 1986). It is also well known that even a sim-
ple one-dimensional complex difference system like Mandelbrot’s difference
equation, zn+1 = z2

n + c, can describe a variety of curious chaotic behaviors.
Therefore, it is expected that our model can predict a variety of behaviors
among members of a small group if it is appliable to real life situations.
Chino (2003b) proposes some preliminary algorithms to fit a special case of
this generalized model to the longitudinal relational data matrices.

Compared with data analytic models like DYNASCAL, theoretical mod-
els such as the Verhulst process and our difference model permit to examine
their theoretical behaviors precisely. In fact, there has already been proposed
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a similar model of social systems, although it is restricted to two-person sys-
tems. Gregersen and Sailer (1993) examine a metamodel of two-person
social systems described by the following real two-dimensional nonlinear dif-
ference equation,

xn+1 = r1
xx

2
n + r1

yy
2
n + r1

xyxnyn − ux,

yn+1 = r2
xx

2
n + r2

yy
2
n + r2

xyxnyn − uy, (45)

and find curious chaotic behaviors. It is apparent that these equations include
Mandelbrot’s Set when r1

x = 1, r1
y = −1, r2

xy = 2, with the other rs equal
to zero, as they note.

Next, we shall discuss some special cases of our general complex difference
system model. Consider first a special case of our model described by eq. (42)
through (44) when p = 1, m = 2, and N = 2. This is clearly a special two-
person system. In this case, eq. (42) can be written as

zj,n+1 = az2
jn + bzjn + c, (46)

where

a = w
(2)
jk,n, b = 1 − w

(1)
jk,n − 2w

(2)
jk,nzkn,

c = w
(1)
jk,nzkn + w

(2)
jk,nz

2
kn. (47)

Now we shall make a strong assumption that the member j completely ignores
the relationship with other member k. In other words, we shall assume that
a, b, and c defined by equation (47) are all constants. If one notices that our
model is a complex space model, it is evident that equation (46) is equivalent
to the Mandelbrot’s system.

In a somewhat more general case, when p = 1, m = 2 in the N-person
system, eq. (42) can be written as the same as eq. (46), but

a =
N∑

k �=j

w
(2)
jk,n, b = 1 −

N∑
k �=j

w
(1)
jk,n − 2

N∑
k �=j

w
(2)
jk,nzkn, (48)

and

c =
N∑

k �=j

{
w

(1)
jk,nzkn + w

(2)
jk,nz

2
kn

}
. (49)

In fact, the Julia set becomes a unit circle when a = 1, b = 0, and c = 0 in
equation 46 and equation 49. In this case, there are two fixed points, z = 0, 1
on the disc. It is easily shown that the former is superattracting, while the
latter repelling. Figure 12 shows an orbit, which starts from an interior point
of the circle (that is, from a point of the Fatou set of the system under
consideration), which approaches to the origin in a few iterations.

By contrast, if the orbit starts from the point z0 = cos(π/21)+i sin(π/21),
it rotates on the unit circle, as shown in Figure 13. Theoretically, this orbit
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Figure 12: An orbit of the simplest Julia set with the initial value, z0 =
0.5 + 0.6i
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Figure 13: An orbit of the simplest Julia set with the initial value, z0 =
cos(π/21) + i sin(π/21)

rotates on the unit circle infinitely, but due to the round errors in computa-
tion, it drops in the interior of the circle after a few iterations, and attracted
to the origin afterward, as can be seen in Figure 14. Figures 15 and 16, re-
spectively, shows the changes in real- and imaginary-coordinates of the orbit
depicted in Figure 14.

As another Mandelbrot process, we show a process with c = −0.12+0.74i
in Figure 17, which is a well-known process. Its rough picture is, for example,
shown in Figure 4 in Peitgen and Richter (1986). The white part of the figure
is, of course, the filled Julia set generated by the process, its boundary is the
Julia set, and the complement of the Julia set is the Fatou set. In this system,
there are two repelling points, −1.2737+0.4782i and 1.2737−0.4782i. Figure
18 shows an orbit which starts from a neighborhood of the former repelling
point.
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Figure 14: Another orbit of the simplest Julia set with the initial value,
z0 = cos(π/21) + i sin(π/21)
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Figure 15: Change in the real-coordinate of the orbit depicted in Figure 3

There is a three cycle in the process shown in figure 17, too. This cycle
is composed of the three points, one of which is located at the center of the
biggest leaf near the origin, and the other two at the centers of the two biggest
leaves in the second quadrant, respectively. Figure 19 shows an orbit which
starts from a point of the leaf in a fourth quadrant.

In a more general case, when p = 1, eq. (42) can be written as follows,

zj,n+1 = arz
r
jn + ar−1z

r−1
jn + . . . + zjn + a0, (50)

where the first three factors, ar, ar−1, and ar−2 are defined, respectively, as
follows:

ar = (−1)r fr(w
(r)
j,n),

fr(w
(r)
j,n) =

N∑
k �=j

w
(r)
jk,n,
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Figure 16: Change in the imaginary-coordinate of the orbit depicted in Figure
3
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Figure 17: A Mandelbrot process with c = −0.12 + 0.74i

ar−1 = (−1)r−1fr−1(w
(r−1)
j,n ),

fr−1(w
(r−1)
j,n ) =

N∑
k �=j

w
(r−1)
jk,n

+
N∑

k �=j

rCr−1w
(r)
jk,nzkn,

and

ar−2 = (−1)r−2fr−2(w
(r−2)
j,n ),

fr−2(w
(r−2)
j,n ) =

N∑
k �=j

w
(r−2)
jk,n

+
N∑

k �=j

r−1Cr−2w
(r−1)
jk,n zkn
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Figure 18: An orbit of the Mandelbrot process shown in Figure 7 with the
initial value, z0 = −0.2738 + 0.4783i
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Figure 19: Another orbit of the Mandelbrot process shown in Figure 7 with
the initial value, z0 = −0.1 − 0.7i

+
N∑

k �=j

rCr−2w
(r)
jk,nz

2
kn.

Finally, factor a0 is defined as follows:

a0 =
N∑

k �=j

r∑
m=1

w
(m)
jk,nz

m
kn.

We have introduced some of the “unusual behaviors” of members in some
special cases of our complex difference system model, and have discussed the
implications of these abnormal behaviors of members.

These special cases of our general complex difference system model rest on
the assumption that a certain member of a group suddenly begins to ignore
all the sentiment relationships with the other members from a specified point

27



in time. Such an assumption seems to be unusual, but it seems to be possible
that we behave abnormally under some critical situations.

There remains several questions to be answered. One of them may be
the question of how long such an abnormal situation might continue working.
Another may be the question of what kind of behaviors are predicted for
members of a group under a normal situnation. Here, we mean by ‘normal’
the usual situation in which there is no such a person who ignores all the
sentiment relations with other members.

Finally, there exists a fundamental question about our general nonlinear
model. Note that equation (42) states that any member of a group is moti-
vated to move basically according to the magnitude of skewness of sentiment
between two members including him or her. In other words, this model as-
sumes that members will not move in his or her psychological space if there
exists no skewness of sentiment between any two members. However, such
an assumption seems to be too restrictive. In the daily life situation our
sentiment relatioships between neighbors seem to be dynamic and sometimes
flucturating. Considering such a dynamic interpersonal relationships, it seems
to be necessary and natural to revise our general model further.
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29, 77-182.

Chino, N. (1978). A graphical technique for representing the asymmetric
relationships between N objects. Behaviormetrika, 5, 23-40.

Chino, N. (1984). Toward a theory of dynamical system in group dynamics.
Working paper of the specific researches in education and psychology by
the aid of The Ministry of Education in Japan, Nagoya. Nagoya Univ.

Chino, N. (1990). A generalized inner product model for the analysis of
asymmetry. Behaviormetrika, 27, 25-46.

Chino, N. (1992). Metric and Nonmetric Hermitian canonical models for
asymmetric MDS. Proceedings of the 20th annual meeting of the Behavior-
metric Society of Japan (pp.246-249), Tokyo, Japan.

Chino, N. (1997). Hitaisho Tajigen-Syakudo Kousei-Ho. [Asymmetric Mul-
tidimensio nal Scaling]. Kyoto: Gendai-Sugaku.

Chino, N. (2002). Complex space models for the analysis of asymmetry. In
S. Nishisato, Y. Baba, H. Bozdogan, and K. Kanefuji (Eds.) Measurement
and Multivariate Analysis (pp. 107-114). Tokyo: Springer-Verlag.

Chino, N. (2003a). Complex difference system models for the analysis of
asymmetry. In H. Yanai, A. Okada, K. Shigemasu, Y. Kano, and J.
J. Meulman (Eds.) New Developments in Psychometrics (pp.479-486).
Tokyo: Springer-Verlag.

Chino, N. (2003b). Fitting complex difference system models to longitudi-
nal asymmetric proximity matrices. Paper presented at the 13th Interna-
tional Meeting and the 68th Annual Meeting of the Psychometric Society.
Cagliari, Sardinia, Italy.

Chino, N. (2005). Abnormal behaviors of members predicted by a complex
difference system model. Bulletin of the Faculty of Psychological & Phys-
ical Science, 1, 69-73.

Chino, N., & Nakagawa, M. (1983). A vector field model for sociometric data.
Proceedings of the 11th annual meeting of the Behaviormetric Society of

29



Japan (pp.9-10), Kyoto, September.
Chino, N., & Nakagawa, M. (1990). A bifurcation model of change in group

structure. The Japanese Journal of Experimental Social Psychology, 29,
No.3, 25-38.

Chino, N., and Shiraiwa, K. (1993). Geometrical structures of some non-
distance models for asymmetric MDS. Behaviormetrika, 20, 35-47.

Constantine, A. G. & Gower, J. C. (1978). Graphical representation of asym-
metric matrices. Applied Statistics, 27, 297-304.

Cox, T. F. and Cox, M. A. A. (2001). Multidimensional Scaling, 2nd Edition.
London: Chapman & Hall/CRC.

De Rooij, M. and Heiser, W. J. (2003). Graphical representations and odds
ratios in a distance-association model for the analysis of cross-classified
data. Psychometrika, 70, 99-122.

De Rooij, M. and Heiser, W. J. (2005). Graphical representations and odds
ratios in a distance-association model for the analysis of cross-classified
data. Psychometrika, 70, 99-122.

Escoufier, Y., & Grorud, A. (1980). Analyse factorielle des matrices carrees
non symetriques. In E. Diday et al. (Eds.) Data Analysis and Informatics
(pp.263-276). Amsterdam: North Holland.

Gower, J. C. (1977). The analysis of asymmetry and orthogonality. In J.R.
Barra, F. Brodeau, G. Romer, & B. van Cutsem (Eds.), Recent Develop-
ments in Statistics (pp.109-123). Amsterdam: North-Holland.

Gregerson, H., and Sailer, L. (1993). Chaos theory and its implications for
social science research. Human Relations, 46, 777-802.

Guckenheimer, J. & Holmes, P. (1983). Nonlinear Oscillations, Dynamical
Systems, and Bifurcations of Vector Fields. Berlin: Springer-Verlag.

Harshman, R. A. (1978). Models for analysis of asymmetrical relationships
among N objects or stimuli. Paper presented at the First Joint Meeting
of the Psychometric Society and The Society for Mathematical Psychology,
Hamilton, Canada.

Harshman, R. A., Green, P. E., Wind, Y., & Lundy, M. E. (1982). A model for
the analysis of asymmetric data in marketing research. Marketing Science,
1, 205-242.

Heath, R. A. (2000). Nonlinear Dynamics - Techniques and Applications in
Psychology, London: Lawrence Erlbaum Associates.

Hirsch, M. W., & Smale, S. (1974). Differential equations, dynamical systems,
and linear algebra. New York: Academic Press.

Holland, P. W., & Leinhardt, S. (1977). A dynamic model for social networks.
Journal of Mathematical Sociology, 5, 5-20.

Kiers, H. A. L., & Takane, Y. (1994). A generalization of GIPSCAL for the
analysis of asymmetric data. Journal of Classification, 11, 79-99.

Krumhansl, C. L. (1978). Concerning the applicability of geometric models
to similarity data: The interrelationship between similarity and spatial
density. Psychological Review, 85, 445-463.

30



Kruskal, J. B., & Wish, M. (1978). Multidimensional scaling, University
paper series on quantitative applications in the social sciences, 07-011.
Beverly Hills, California: Sage Publications.

Lewin, K. (1933). Environmental forces. In C. Murchison (Ed.), A Handbook
of child psychology, Vol.2. New York: Russell & Russell. pp.590-625.

Okada, A., & Imaizumi, T. (1987). Nonmetric multidimensional scaling of
asymmetric proximities. Behaviormetrika, 21, 81-96.

Okada, A., & Imaizumi, T. (1997). Asymmetric multidimensional scaling of
two-mode three-way proximities. Journal of Classification, 14, 195-224.

Peitgen, H.-O, and Richter, P. H. (1986). The Beauty of Fractals, New York:
Springer-Verlag.

Peixoto, M. C., & Peixoto, M. M. (1959). Structural stability in the plane
with enlarged boundary conditions. Anais da Academia Brasileira de Cien-
cias, 31, 135-160.

Ramsay, J. O. (1977). Maximum likelihood estimation in multidimensional
scaling. Psychometrika, 42, 241-266.

Ramsay, J. O. (1982). Some statistical approaches to multidimensional scal-
ing data. The Journal of the Royal Statistical Society, Series A (General),
145, 285-312.

Read, C. B. (1978). Tests of symmetry in three-way contingency tables.
Psychometrika, 43, 409-420.

Rocci, R., & Bove, G. (2002). Rotational techniques in asymmetric multidi-
mensional scaling. Journal of Computational and Graphical Statistics, 11,
405-419.

Saburi, S., & Chino, N. (2005). Proceedings of the 33rd annual meeting of the
Behaviormetric Society of Japan (pp.404-407), Nagaoka, Japan.

Saburi, S., & Chino, N. (2006, submitted). A maximum likelihood method
for an asymmetric MDS model.

Saito, T. (1991). Analysis of asymmetric proximity matrix by a model of
distance and additive terms. Behaviormetrika, 29, 45-60.

Saito, T., & Takeda, S. (1990). Multidimensional scaling of asymmetric prox-
imity: model and method. Behaviormetrika, 28, 49-80.

Sato, Y. (1988). An analysis of sociometric data by MDS in Minkowski
space. In K. Matsusita (Ed.), Statistical Theory and Data Analysis II
(pp.385-396). Amsterdam: North-Holland.

Takane, Y. (1981). Multidimensional successive categories scaling: A maxi-
mum likelihood method. Psychometrika, 46, 9-28.

Tobler, W. (1976-77). Spatial interaction patterns. Journal of Environmental
Systems, 6, 271-301.

Torgerson, W. (1952). Multidimensional scaling : I. Theory and method.
Psychometrika, 17, 401-419.

Torgerson, W. (1958). Theory and Methods of Scaling. New York: Wiley.
Trendafilov, N. T. (2002). GIPSCAL revisited. A projected gradient ap-

proach. Statistics and Computing, 12, 135-145.

31



Weeks, D. G., & Bentler, P. M. (1982). Restricted multidimensional scaling
models for asymmetric proximities. Psychometrika, 47, 201-208.

Yadohisa, H., & Niki, N. (1999). Vector firld representation of asymmetric
proximity data. Communications in Statistics - Theory and Method, 28,
35-48.

Young, F. W. (1975). An asymmetric Euclidean model for multi-process
asymmetric data. Paper presented at U.S.-Japan Seminar on MDS, San
Diego, U.S.A.

Young, G., & Householder, A. S. (1938). Discussion of a set of points in terms
of their mutual distances. Psychometrika, 3, 19-22.

Zielman, B., & Heiser, W. J. (1993). Analysis of asymmetry by a slide-vector.
Psychometrika, 58, 101-114.

Zielman, B., & Heiser, W. J. (1996). Models for asymmetric proximities.
British Journal of Mathematical and Statistical Psychology, 49, 127-146.

32





HQS�����

�����

�����

�����

reject

accept (θ
(12)
ij = θ

(12)
ji ) �

HMH�����

�����

�����

�����

reject

accept (μi· = μ·j)

�
R10

�
R11

�

HQI�����

�����

�����

�����

reject

accept (μij = aibj) �

HMH�����

�����

�����

�����

reject

accept (μi· = μ·j)

�
R8

�
R9

�

HI�����

�����

�����

�����

reject

accept (θ
(12)
ij = 0) �

HMH�����

�����

�����

�����

reject

accept (μi· = μ·j)

�
R6

�
R7

�

H1�����

�����

�����

�����

reject

accept (θ
(1)
i = 0) �

H2�����

�����

�����

�����

reject

accept (θ
(2)
i = 0)

�
R3

�

HMH�����

�����

�����

�����

reject

accept (μi· = μ·j)

�
R4

�
R5

�

H2�����

�����

�����

�����

reject

accept (θ
(2)
i = 0) �

R2
�

R1

Figure 6: A flow chart of various symmetry tests and a related test in a
preprocessing step


